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ABSTRACT

The TEM mode reflection coefficient is analyzed for a symmetric
parallel-plate waveguide terminated in a ground plane and radiating into
a perfectly reflecting sheet oriented normal to the guide axis. By using
the wedge diffraction method the reflection from the conducting sheet is
treated in terms of successive contributions or bounces that describe
the interacting waves between the waveguide wedges and the reflector.

Each of these bounce waves can be resolved into component cylindri-
cal waves. The scattering of each of these component cylindrical waves
by the guide produces two subsequent cylindrical waves. These are:
the geometrical optics component which results from reflection from the
ground plane and the aperture component which represents the effect of
the aperture in the ground plane. Thus the total reflection from the
sheet is obtained by summing these iterative contributions. The results
from this analysis are in good agreement with measurements and the
Fourier transform analysis presented in Ref. 4.

The transmission between waveguides is a by-product of the reflect-
ing sheet analysis. Calculated results are given for the transmission be-
tween two waveguides with each mounted in a ground plane and facing each
other.
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THE REFLECTION COEFFICIENT OF A GROUND-PLANE
MOUNTED TEM MODE PARALLEL-PLATE WAVEGUIDE
ILLUMINATING A CONDUCTING SHEET

I. INTRODUCTION

The reflection coefficient of a TEM mode symmetric parallel-plate
waveguide illuminating a perfectly conducting sheet oriented normal to
the guide axis as shown in Fig. ! has been analyzed by wedge diffraction
techniques.l’2 The analysis of this reflecting sheet problem gives in-
sight into the basic diffraction behavior of small aperture antennas which
radiate into overdense plasmas. This analysis is applicable for space-
craft reentry situations in which the plasma medium can be adequately
modeled by a simple reflecting sheet.

For the half-plane guide, multiple interactions between the guide
and the reflector are negligible hence the reflection coefficient was ob-
tained by considering only one single bounce wave. For guides with
wedge angles (WA) less than 70°-80°, the reflection coefficient was
found by assuming that the interactions between the guide aperture and
the reflecting sheet are bouncing plane waves and obtaining these inter-
action waves through a self consistency procedure. Fz‘or the ground
plane case (WA = 90°) and the large wedge angle case the interacting
waves were treated as successively bouncing cylindrical component

WA

Ll L2\ Ll
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1
23 S R A R
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1N N | N W W N ) ) N N W N NN

Fig. 1. Symmetric parallel-plate guide radiating
into reflecting sheet.




waves. The total reflection coefficient in thé grotund plane case was
obtained in Ref. 1 by summing the free space reflection coefficient,
or that of the guide radiating in free space,’ and the contribution of
the first five bounce waves. Higher bounces were not included due to
computational complexities.

Recently NASA engineers at Langley, Va. analyzed the same
ground plane problem by using the Fourier Transform method with a
dominant mode assumption.” Comparison of their results and that
obtained in Ref. 1 indicated that effects of the higher order bounce waves
are significant, especially when the spacing between the ground plane
and reflecting sheet were near multiples of half wavelengths. In this
report appropriate simplifications are made in the diffraction method
analysis of Ref. 1 for ground-plane guides to allow the inclusion of up
to several hundred higher order bounce waves. In fact, the summation
is carried on until contributions from subsequent higher order bounces
are indeed negligible.

A by-product of the analysis for the reflecting sheet problem is
the solution to a different problem: the transmission between identical
waveguides. In the transmission problem the sum of the odd-numbered
bounces for the reflecting sheet problem gives the transmission to the
receiving guide whereas the even-numbered bounces give the reflection
coefficient of the transmitting guide. The sum of the transmitted and
reflected waves in the transmission problem is equal to the reflected
wave for the reflecting sheet problem. Calculated results are presented
for the transmission between ground-plane mounted guides.

The free-space reflection coefficient for the ground-plane mounted
TEM parallel plate wa.veguide3 is given by

o
_J Z
(1) I‘S=%%[D1(lll1= 0) + Da(2= 0)] e ’

where

Dy = 0) = DYz = 0)

A
)7
e

2k [Rl(l)(9=-") + Rl(z)(9=-“)]

:
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with
R{D©) =LsinT 1 ,
n n w w40 )
cOs n - COS _—n
and

Rl(z)(e)

R (3) [va (= F-00) +Va(a F-00)] -

II. REFLECTION COEFFICIENT ANALYSIS FOR
THE GROUND-PLANE MOUNTED GUIDE

By the wedge diffraction method the reflection coefficient of the
waveguide is the superposition of the free space reflection coefficient
and the reflection coefficient caused by the presence of the conducting
sheet. Formulating the reflection from the sheet in terms of successive
bounces, the first bounce wave is the free space radiation from the wave-
guide which reflects from the sheet back onto the waveguide. The first
bounce wave then scatters from the waveguide wedges producing a second
bounce wave which propagates toward the reflecting sheet. The second
bounce wave in turn reflects from the sheet back onto the waveguide
giving rise to a third bounce wave, and so on to higher order bounces.
Each bounce produces a contribution to the reflected TEM mode in the
waveguide.

A. On-Axis Field of the TEM Mode
Ground-Plane Mounted Guide as
the First Bounce Wave

Calculations of the free space fields of various parallel-plate guides
has been madel’6 using the near field formulation outlined in Ref. 5.

These calculations show that in the region of the projected guide cross
section the free space wave radiated from the guide may be represented
by an isotropic cylindrical wave from a line source. The line source
location may be determined exactly by examining the phase curvature as
was done in Ref. 1. In general, however, the line source may be assumed
to be located at the center of the guide aperture to a very good degree of
approximation.



This and subsequent approximations in the analysis are valid pro-
vided the observation distances are sufficiently removed from the aperture.
For guidewidths (3) less than a wavelength this minimum distance, which
is dependent on the guide width, is less than a wavelength. Because of
this limitation in the general analysis, the conducting sheet is required
to be sufficiently removed from the aperture for the analysis to be valid.
For example, for a guide width equal to 0.278 \ the minimum distance
(d) is approximately 0.5\ .

The equivalent cylindrical wave for the first bounce wave is given
by the free space field on the axis of the guide; this field as analyzed by
wedge diffraction may be obtained by summing the singly and doubly
diffracted fields as shown in Fig. 2. The singly diffracted wave from
edges 1 and 2 expressed in ray form are given respectively by

(2) R, (o) = sxnlr- ,
n

]

wt+6
cos

and

Fig. 2. Singly and doubly diffracted rays from the guide.
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(3) R,\V(0) =2 sin T 1 ,
n n T -0
[of 0} -] ; - COS

where the exponential term in Eq. (3) results from referring the phase
to edge 1.

The singly diffracted ray which illuminates the opposite edge giving rise
to the doubly diffracted waves is given by

1

iy w2
cCOS — - cos —
n n

(4) RI(I) = —Il; sing-

The doubly diffracted ray is then given by

-

(6) R,")= RI(I) VB(a’ %- e,n) + Vg (a,g'zl- e,n)] o Jkasin®

e

The total radiation from the guide is then
(7) rRp(0) = Ry{M(6) + Rl (0) + R,((0) + Ra(D(0) .

The on-axis field radiated by the guide is then obtained by taking the limit
on Rp(0) as ® —0 and is given by

: -j (kr + %)
(8a) Hr(r, 8=0)= [lim RT(G)] €
6—90 N2mkr

] 1 T (2) e
= ka - —— —t 2 P
[J a-15 ooty g ekt ] NZT KT




where

(8b) R;"®) = R{*(6=0) = R,(2)(0=0)

Ry(M [VB (+3) *Va (= -3—2'1)] :

The relationship expressed in Eq. (8) may also be obtained by
performing the limit operation on the near-zone field expressions found
in Ref. 1 as will be discussed in a later report.6 The first bounce wave
is then simply expressed as an isotropic cylindrical wave with field
values given by Eq. (8).

B. Multiple Bounce Formulation

For purposes of determining the second bounce wave in the projected
guide cross section, the first bounce wave may be treated as that of an
isotropic cylindrical wave from a line source located at a distance 2d
from the guide aperture, where d is the distance to the sheet as shown
in Fig. 3a. The scattering of a cylindrical wave by the wedges forming
the waveguide may be analyzed by the wedge diffraction method. Cal-
culations show: that the scattered wave can be resolved into two cylindri-
cal wave components . The principal component is the geometrical
optics component or the reflection of the incident cylindrical wave by the
ground plane without an aperture. This wave component has a virtual
source located at the image in the ground plane of the equivalent line source
representing the first bounce wave as shown in Fig. 3b. The second com-
ponent is the aperture component which is the difference between the total
second bounce wave and the geometrical optics component. The aperture
component is very similar to the backscatter by a strip or thick wall.
Calculations show that in the region of the projected guide cross section
the aperture component may be represented by an isotropic cylindrical
wave with its source located at the center of the aperture,! as shown in

Fig. 3c.

The aperture component of the scattered field resulting from an
incident cylindrical wave depends only on the value of the incident field
and is independent of the source location provided the source is sufficiently
removed from the guide, as discussed previously. This fact together with
a shadow boundary approximation for the wedge diffraction function VB
permits the value of the aperture component to be simply computed. The
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Fig. 3. Scattering of a cylindrical wave in the
ground plane case.

simplification results because the aperture component may be determined
using plane wave diffraction from the waveguide wedges.

For a plane wave of unit magnitude normally incident on the wave-
guide wedges as shown in Fig. 4 the diffracted field at a point P is given

by
VB (rls“l)l"'%) + Vg (rz» Y2 +%)

VBGn%-%)+VBG”%'%)

Do(l) [ Ud(rl, a, LlJl’ TI') + Ud(rZ’ a, q’Z! TT)]

(9) H(P)

-+

where

Gl ) AN Gk SN E R a8 e am e
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Fig. 4. Scattering of an incident plane wave
in the ground plane case.

-1
(10) Do(l) =-§-sin—§- ™ [(cos%n - cosg)

;T

corresponds to the s'ingly diffracted ray from each edge which illuminates
the opposite edge and

rr

-jk(r+ry) 'k( 2 )
(11) Ug(r, ros P, Yo) :_3__J_+____i eJ r+rg
NT To

(i) vz om)
' rtr, rtr,

is the diffracted field at (r, ) due to a line source at (r, tIJo)"f The Vg
terms in Eq. (9) result from the singly diffracted waves from the wedges
whereas the U4 terms express the doubly diffracted waves.

The terms Vg(r, P+ w/2) are given by the Fresnel integral formu-
lation of Hutchins and Kouyoumjian8’9 in which the Fresnel functions can
be approximated in the region corresponding to the projected guide cross

section by



“iu om om om

(12) C(W)= W for W small.

S(W)= 0

Thus a shadow boundary approximation for Vg is obtained as shown in
Appendix III and is given by

~ 1 .
(13) . VB(r,¢) = 5 exp(jkr cos ¢)
iT § =
r T
X 4+ |1 -4e 4% cos & - —cotX®
2 n n\Zwkr
ford =

where the + sign is for ¢ > 7 and the minus sign is for ¢ < w. For the
ground plane mounted guide (90° wedge angle = (2-n)T = interior wedge
angle), ¢> 7 and n = 1.5.

The following approximation is also valid in the projected guide
cross section:

1 T 1 T ~ a
(14) cos-z-(Lpl +_2—)+COSE(¢Z+E> = - Zro

Thus in the region of the prdjected guide cross section the first two
terms in Eq. (9) may be approximated as

(15) VB (r1,¢1+%) + Vg (rz,¢z+g)
E
7 1t 2 t 3
= exp(jkr, cosd,) |1 +2 e — |cos + cos
o A 2 2
. __jE
T e 4
- — cot —
n n N2wkr

s
~
3
ql
H

[o]

To

exp(jkr, cos $5) [l - a e - —cot —
n
9




where r, and ¢, are the coordinates of the observation point P with
respect to the center of the aperture and hence

(16) Ty €O8 ¢y = T] COS (l.pl + %) = r, cos ('«Ilz + %‘)

The term exp(jkry, cos ¢g) in Eq. (15) is identified as the reflected
plane wave from the ground plane without the waveguide aperture present
and hence corresponds to the geometrical optics component of the scattered
field for plane wave incidence. The second two terms in Eq. (15) together
with the VB(r, y-n/2) and Do(l) Uq terms of Eq. (9) constitute the aperture
component of the plane wave diffraction. For the VgB(r, {-w/2) terms the
asymptotic form valid for large values of kr[1 + cos({y - w/2)] may be used:

2 2 -j(kr +1'-)
7 8in @ 4
(17) VB(I¢‘E> .3 3 e
2 2 2 m NZ2mkr
cos§1r-cos§ lIJ-E

For the case of cylindrical wave incidence as shown in Fig. 3 the
aperture component of the scattered wave is, to a very good approximation,
the same as that for plane wave incidence shown in Fig. 4, with the plane
wave field equal to the incident field of the cylindrical wave at the wave-
guide aperture. Thus the aperture component for cylindrical wave inci-
dence is obtained from Eqs. (15) and (17) as

i -jkro
(18a) Ha=H'Kp £ 22
A A
and
. T j‘"' JTT
Jx “JF =)
(18b) Ka = RN RPN IV ) S -1 cot_m_ e’ 4
N 9w 1.5 1.5 Jiox

+ 2 Do(l) l:VB (a, 12'_) + VB( , 221):] s

where Hi is the incident field of the cylindrical wave at the aperture.
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Since the first bounce wave can be adequately described by an iso-
tropic line source at the center of the aperture of the waveguide image,
the first bounce contribution to the reflection coefficient is obtained as
shown in Fig. 5a. The modal current induced in the waveguide by a line
source I, is given by (Ref. 5, Eq. (18))

(19a) 1= | * HQL,
2T a
and
.
1 (2) vz
1 = i - _“.. 2 e
(19b) I, (Jka T cot % + 2Ry ) = .
I
: I
|
FIRST BOUNCE [} «— I
(a) l 2d
a
|
I
L
S , ° I,
SECOND BOUNCE I, <«— I .
(b) - | ad 4d
|
— | 1 1 1
THIRD BOUNCE I3 «— | o3 .2 S
(c) | 2d 4d - ed .
|
|

Fig. 5. Bounce contributions to reflection coefficient.
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where HT(Q) is the free space magnetic field at point Q as radiated from
the guide with an incident modal current Na from within the guide. The
line source I; radiates the on-axis field of the waveguide as given by
Eq. (8). Using the value of H(Q) as given by Eq. (8) the first bounce
reflection coefficient is obtained from Eq. (19) as

- -jk(2d
(20) Ty =_I_=C11_e_.J~u

Na NZd
where

s | |

4 1 -1 w (2)

21 =2 ] +{ — }{— T +2
“h € = [ (jka)(l.SCOtl.S t 2Ry )

and RI(Z) is given by Eq. (8b).

The scattering of the cylindrical wave from I, by the waveguide
results in a second bounce wave which is composed of two components
as shown in Fig. 3. The geometrical optics component of the second
bounce wave reflects from the sheet back onto the waveguide such that
it may be represented by the line source I located at a distance 4d from
the guide aperture, as shown in Fig. 5b. The aperture component of the
second bounce wave reflects onto the waveguide as described by the line
source I; in Fig. 5b. The value of I; is obtained by equating the value
of its radiated field with that of the aperture component in Eq. (18)

. N
_Jkro + J Z ) e'jkro
(22) Hp=1 S =H'Kp =—nn- .
N2w To '\Jro

Hi'is the incident field of the illuminating line source I at the guide
aperture in Fig. 5a, as given by

-ik(2d) +; ¥
jk(2d) g

(23) Hi=1; &
NZw (2d)
Hence the value of I; is given by
o-Ik(2d)
(24) I, =01 Kp NS

12



The corresponding second bounce reflection coefficient is then given by
the modal current induced by I; and I; as shown in Fig. 5b:

(25) r -C[I e I(Ed) +1 e IK2d)
: ‘TN . Wa '

The n -th bounce wave is given by n cylindrical wave components
with sources: I; at n(2d), I at (n-1)(2d), ..., I, at 2d. The n-th source
is given by

6 Z -JkZd(n-m)
2 = K
(26) A NZd(n-m)

and the n-th contribution to the reflection coefficient is given by

n

-_]kZd(n m+1)
(27) zg

NZd(n-m+1)

The total reflection coefficient due to the reflecting sheet or plate is
given by

(28) [‘p = Z Fn .
n=1

The total reflection coefficient [' of the waveguide is obtained by super-

posing I‘p and the free space reflection coefficient I'g:
(29) [=Trg+Tp.
C. Results

The total reflection coefficient for the ground-plane mounted guide
calculated by wedge diffraction analysis is compared to the results of
the Fourier Transform solution® and to measured results in Figs. 6
through 18. Figures 6 and 7 shows the comparisons of the reflection

13



coefficient in both phase and magnitude for a ground-plane mounted guide
with guide width equal to 0.278\ and with the reflector spacing (d) ranging
from 0.5 to 2.0X . The measured data in Fig. 6 was obtained using a
narrow angle sectoral horn to simulate a parallel-plate waveguide.!
Figures 8 and 9 show the comparison for the same guide with reflector
spacing ranging from 2.0\ to 2.5\ and from 19.5\ to 20.0\. For
larger reflector spacing near 20\ the resonance behavior becomes much
more localized as characterized by the sharp spike in the reflection
coefficient at critical spacings.

The comparison for the guide width equal to 0.332\ case is shown
in Figs. 10 and 11. Figures 12 and 13 compares the results for a 0.423\
guide width. In Figs. 10 and 12 the measured data were obtained by Jones
and Swift* using an extremely narrow angle sectoral horn.

In Figs. 14, 15, and 16 the comparison is made for guides of widths
equal to 0.6\, 0.8\, and 1.0\, respectively, with reflector spacings
ranging from 1.5\ to 2.0\ .

Figures 17 and 18 compares the two methods for guide width equal
to 1,0\ and reflector spacing ranging from 4.5\ to 5.0\ and 19.5\ to
20.0\, respectively.

As can be seen from the comparison, remarkably good agreement
is found in general between the reflection coefficient calculated by the
wedge diffraction method and that by the Fourier Transform method.

The larger differences found between the two methods for relatively
small d/a may be attributed to inadequacies in the uniform line source
approximation of the guide radiation in the wedge diffraction method. As
d/a increases, the uniform line source assumption becomes quite good
and the agreement between the two methods is seen to become much
closer.

By the close agreement between the results for d > 1.0\, the
dominant mode assumption made in the Fourier Transform solution®
can be concluded to be quite accurate since higher order mode effects

are included in the wedge diffraction solution. Appendix IV gives both

the free-space reflection coefficient and the on-axis guide radiation computed

with and without the presence of higher order modes. This comparison
shows that the presence of higher order modes affects the magnitudes of
these quantities very little and only introduces a small phase correction.
It is thus concluded that this higher order mode phase correction factor
causes the small disagreement between the results obtained from the
Fourier Transform and the wedge diffraction methods.

14
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The resonance behaviors observed at reflector spacings equal to
integral multiples of half wavelengths may be further confirmed by
examining the Green's function for a magnetic line source located in a
parallel-plate region. Morse and Feshback!® give the Green's function
of a source located at (xq, yo) as

o0

(75) {52
cos cos
h h

ilY'Yollkz'(“V/hF«
e

(30) G(r|To) = (Z‘i'l)

3
v
v=0

K% - (mv/h)?
where h is the cavity spacing.

Kouyoumjian'! has also obtained the same expression by a dif-
ferent method. It may then be noted that at cavity spacings h equal to
integral multiples of half wavelengths, resonance behavior is also
observed for a magnetic line source, which may simulate an infinitesimally
small TEM mode waveguide.

II1. THE TRANSMISSION PROBLEM

A by-product of the above analysis for the reflecting sheet problem
shown in Fig. 1 is the solution for the transmission problem shown in
Fig. 19. Only the ground plane case (WA = 90°) is considered for the
transmission problem. The wave transmitted into the receiving guide
is given by summing only the odd-numbered bounces of Eq. (27) and the
sum of the even-numbered bounces plus I's gives the reflection coefficient
of the transmitting guide.

Representative calculations of transmission and reflection for the
transmission problem are given in Figs. 20, 21, and 22 for guide widths
equal to 0.278\ and 0.332\, along with the reflection coefficient for the
reflecting sheet problem. It is seen that the transmission peaks occur
at every quarter wavelength in d or every half wavelength in the width 2d
of the cavity formed between the two ground planes. In the corresponding
reflecting sheet problem, the peaks occur at every half wavelength in
width d of the cavity formed between the reflecting sheet and the ground
plane.
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Fig. 19. Transmission between two identical ground-plane
mounted parallel-plate waveguides.

Image theory applies to the transmission problem of Fig. 19 when
both guides are transmitting equal incident waves and consequently states
that the reflection coefficient of each is the same as that for the reflecting
sheet problem. This observation provides no additional information since
the image problem is essentially identical.

Iv. CONCLUSIONS

The reflection coefficient of a TEM mode symmetric parallel-plate -
waveguide mounted in a ground plane and illuminating a perfectly reflect-
ing sheet has been analyzed by a simplified version of the method in Ref. 1.
The simplification allows the practical inclusion of several hundred higher-
order interactions. As was shown in Ref. 1, the interaction between the
waveguide and reflector can be described in terms of successively bouncing

29



cylindrical waves. Summation of the contributions of the multiple bounces
plus the free space reflection coefficient of the guide yields the total
reflection coefficient.

- An important physical insight gained by the wedge diffraction
analysis is that multiple interactions between the guide and the reflector,
i.e., higher order bounce waves, contribute quite significantly to the
total reflection coefficient of the waveguide. In fact, at reflector spacings
equal to an integral multiple of A/2 the reflection coefficient rises to unity
magnitude. The results of this analysis agrees well with the Fourier
Transform analysis* and with measurements.

The wedge diffraction analysis employed in this report for the
reflecting sheet problem analyzes cylindrical wave interactions or bounces
between the reflecting sheet and the ground plane and thus provides a
solution to the transmission between identical waveguides facing each
other. This problem is solved by merely summing the odd-numbered and
the even-numbered bounces to obtain the transmitted and reflected waves,
respectively.
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APPENDIX 1

A Fortran IV program using the OSU-PUFFT Compiler has been
written for the computation of the reflection coefficient in Eq. (29). A
statement listing is as follows:
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SEXECUTE PUFF T
SPUFFT 200

13

32

. B0

100

74

77

COMPLEX ABC.CHB

COMPLEX PPIF +XPIF«GAMSIVR]11V324PGAM

COMPLEX TDYsXsR2e¢RTe«CUn CeGAMsTEMs TEMP
DIMENSION CUR(500)sCUI(500)+sGAMR(S00)+GAMI (500)
PI=3.14159265

TWP=6.2831853

PPIF=CEXP (CMPLX(Ue+0s7853982))

XPIF=CONJG (PPIF)

STWP=SQRT (TWP)

C1=SIN(TWP/3.0)

RGTI==4e/3e%C1

RGTO=-~RGTI

READ (5+13) KC

FORMAT (12)

DO 201 KK=1.KC

READ(5¢32) A+GAMSWNC

FORMAT (3F10.5412)

CALL VB (RVB1+UVB11A19040¢1e5)

CALL VB (RVB2+UVB2+A+2704011e5)

VB1=CMPLX (RVB1+UVB1)

VB2=CMPLX (RVB2+.UVB2)

TDO=RGTO/TWP*XPIF

== ARPP [F=2¢/ (9 %P1 ) ¥SQRT (34 ) ¥XPIF+TDO* (VB14VB2)

X=X=1e0/15#COTAN(20943951)/1«S*¥XPIF/TWP
R2=RGTI*(V31+VB2)

RT=CMPLX (004 TWP%A)~COTAN( 20943951 ) /1 ¢5+R2
CU=RT/STWP*CMPLX(Q60v—14)

CUR (1 1=REAL (CU)

CUL (1)=AIMAG(CU)
C=RT/CMPLX (0,0 ¢ TWP*A) *¥PPIF/STWP

WRITE (6+50) TDO«XsR2

FORMAT (1H «6E15e7)

WRITE (6+50) RT«CeCUR(1)aCUI (1)

DO 200 I=1sNC

READ (54100) DNB

FORMAT(F10e5,15)

WRITE(6+74)A«D

FORMAT (//1H $12HGUIDE WIDTH=+F10e5¢20X ¢ 1BHREFLECTOR SPACING=+F10.
25//) )

WRITE (6477)

FORMAT (1H +»1S5HGAMMA INCREMENT s 15X¢13HGAMMA BOUNCES+ 17X+ 11HGAMMA TO
2TAL/)

ABC=GAMS

TD=20%#D

GAM=C*¥CMPLX (CUR(1)+CUI(1))/SURT (TD)*CEXP(CMPLX(0s s =TWP*TD))
TEM=GAM

PTEM=180Ce/PI#ATAN2 (AIMAG(TEM) +REAL (TEM))
GAMR (1 )=REAL (GAM)+REAL (GAMS)

GAMI(1)=AIMAG (GAM)+AIMAG(GAMS)

CBB=GAM )
AGAM=SQRT (GAMR (1 ) *¥¥2+GAM] (1) *#%2)
PG=180¢/PI*ATAN2 (GAMI(1)+GAMR(1))

N=1

- ATEM=CABSI(TEM)

WRITE (6+27) NIATEM«PTEMIATEMPTEMs AGAM PG
DO 200 N=2+NB

TEMP=CMPLX (04404

NM=N-1

XN=FLOAT(N)

DO 156 M=1+NM

XM=FLOAT (M)

TEMP =X#CMPLX (CUR (M) +CUI (M) )/SART (TDH (XN=XM) ) *¥CEXP (CMPLX{(0e+s—~TWP*TD
35




2% (XN=XM)))+TEMP
156 CONTINUE
CUR(N)=REAL (TEMP)
CUI (N)=AIMAG(TEMP)
TEMP=CMPLX (D¢ 04 )
XN=FLOAT(N)
DO 157 M=1+eN
XM=FLOAT(M) .
TEMP:c*cMPLX(CUR(M)oCUI(M))/SQRT(TD*(XN-XM+1.))*CEXP(cMPLx(Ooo*TWP
2*TD*(XN-XM+1.)))+TEMP
157 CONTINUE
GAMR (N )=REAL(TEMP)
GAMI(N)=AIMAG(TEMP)
GAMR (N ) =GAMR (N)+GAMR(N=-1)
GAMI (N)=GAMI (N)+GAMI (N-1)
AGAM:SORT(GAMR(N)**2+GAMI(N)**Z)
PGAM:CMPLX(GAMR(N).GAMI(N))-GAMS
PTEM=1800/PI*ATAN2(AIMAG(TEMP)'REAL(TEMP))
PG=180o/PX*ATAN2(GAMI(N)oGAMR(N))
PPG=180./PI*ATAN2(AIMAG(PGAM)oREAL(PGAM))
ATEMP=CABS(TEMP)
APGAM=CABS (PGAM)
WRITE (6¢29) N.ATEMP.pTEM.APGAM.PPG.AGAM.PG
29 - FORMAT (5Xs IS eSXeOE1Se7)
XXN=FLOAT (N)
KHE=N/2
XXY=XXN/2¢0
XKHE=FLOAT (KHE)
IF (ABS(XXY=XKHE)eGTe0e25) GO TO 573
ABC=ABC+TEMP
ABCM=CABS(ABC)
ABCP=180.0/PX*ATAN2(AlMAG(ABC)oREAL(ABC))
GO TO 937
573 cCBB=CBB+TEMP
cBBM=CABS(CBB)
CBBP=180.0/PX*ATAN2(AlMAG(CBB)oREAL(CBB))
937 WRITE (6+¢29) N.ATEMP.PTEM.ABCM.ABCP.CBBM.CBBP
200 CONTINUE
201 CONTINUE
STOP
END
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APPENDIX 1I

The Generalized Pauli Series used in this analysis for the diffraction
of a plane wave by a wedge was formulated by Hutchins and Kouyoumjian®?
and is presented below. The geometry involved is as shown in Fig. 23.

1T 777877777 7 7

Fig. 23. Plane wave diffraction by a
conducting wedge.

The diffracted field is given by

(31) Ud(p, 8i, 8d;n) = VB(p, 04-8i:n)  VB(p, 04+6;, n)

-

where the + sign is for the electric field polarization perpendicular to
the edge of the wedge and the - sign is for the magnetic field polarization
perpendicular to the edge of the wedge. The diffraction function VB is
given by

(32) VB(P’ ﬁ ;n) = I_n—(P’ p ’n) + I+11’(p’ B ) n)’
where
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o
-J kp+z)
(33) Iin(P:ﬁ;n)me Na cot (“216 )
jn\/ﬁ n

with

1 + cos(B - 2nm N),

]

a

p=06q196;

and N is a positive or negative integer or zero which most nearly satisfies
the equations

2ntN-f = -w for L4,

i

2nwN - B =+ 7 for I

A Fortran IV program for this VB function has been written by
W.D. Burnside and E.L. Pelton. The Fresnel integral subprogram
uses the algorithm found by Boersma.!? A statement listing of these
subprograms is as follows. :
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442

443

542

123

SUBROUTINE VB (RVB«UVIIsR«ANGFN)
COMPLEX DEMesTOPsCOMsEXP+UPPI +UNPI
DOUBLE PRECISION RAGDP+TSIN
PI=314153265

TP1=26428318530

ANG=ANG¥P1/180,0
DEM=CMPLX (Ve OsFN#SQRT(TPI ))
TOP=CEXP(CMPLX(C.Ov-(TPi*R+PI/4.0)))
COM=TORP/DEM
N=IFIX((PI+ANG)/ (2 0*FN#P1)+0¢5)
DN=FL.OAT (N)

A=1e0+COS(ANG=2¢ O¥FN®PI*DN)
BOTL=SQGRT (TPI*R*A)
EXP=CEXP(CMPLX(OsOsTPI*R*A))

CALL FRNELS (CeSeBOTL)
C=SART(P1/2¢0)%#(0e5-C)

Sz SQRT(P1/240)%#(5=0e5)
RAG=(PI+ANG) /(24 O%¥FN)

TSIN=DSIN(RAG)

TS=ABS(SNGL (TSIN)Y)

X=10e0

Y=1eO0/X%%5

IF(TSeGTeY) GO TO 442

COMP=~SQRT (2,0 )y*#¥FN*SIN(ANG/2«0=FN*P [ #DN)
IF(COS(ANG/20~-FN*P[%¥DN)¢LTe0e0) COMP==COMP
GO TO 443 ’
DP=SQRT (A)*DCOS(RAG)/TSIN

COMP=SNGL (DP) '

UPP I =COM*EXP*COMP*CMPLX(Z+¢S)
N=IFIX((=PI+ANG) /(2 0%FN#*#P ] )+045)
DN=FLOAT (N)

A=1e0+COS(ANG-2+ OXFNX¥PI%DN )
BOTL=SQRT(TPI*R¥*A)

EXP=CEXP (CMPLX(0«0 ¢ TRI*R*A))

CALL FRNELS (CeSeBOTL)
C=SQRT(P1/2e0)%#(0¢5=C)

Sz SQRT(P1/2.0)%#(5~065)
RAG=(PI=ANG)/ (2 0¥FN)

TSIN=DSIN(RAG)

TS=ABS (SNGL (TSIN))

TF(TS«GTaY) GO TO 542

COMP= SAQRT(2,0)1#FN¥SINC(ANG/2+0=FN*P [ #DN)
IF (COS(ANG/2s0=-FN*¥PI#DN)ol. Te0e0) COMP==COMP
GO TO 123

DP=SQRT (A)*DCOS(RAG)/TSIN

COMP=SNGL (DP)

UNP 1 =sCOM*EXP*COMP¥CMPLX(CeS)
ANG=ANG#180e0/P1

RVB=REAL (UPPI+UNPI)
UVB=AIMAG(UPPI+UNPI )

RETURN

END

SUBROUTINE FRNELS(Ce+SeXS)

DIMENSION A(12)eB(12)sCC(12)YeD(12)
A(1)=1e595769140

A(2)=-0e000001702

A(3)=~6808568854

A(4)=-0,000576361

A(5)=6920691902

A(6)==-0,016898s857

A(7)=~-3,050485660

A(B)==0,075752419

A(9)=0,850663781

A(10)=-0.025639041
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10
20

30

40
S0

60

A(11)==0,1502230960
A(12)=06034404779
B(1)=-0C00000033
B(2)=4.255387524
B(3)=-0000092810
B(4)=-7780020400
B(5)==~020952089%5
B(6)=5.075161298
B(7)=-0e4138341947
B(8)=-1363729124
B(9)=-06403349276
B3(10)=0,702222016
B(11)==0.216195929
B(12)=0019547031
CC(1)=060
CC(2)=-0,024933975
CC(3)=0,000003936
CCla)=04005770956
CC(5)=0.0C0689892
CC(6)==0,009497136
CC(7)=0.011948809
CCl8)Y==0006748873
CC(9)=0,000246420
€CC(10)=0,002102967
CC(11)==0,001217930
CC(12)=0,C00233939
D(13)=04199471140
D(2)=0000000023
D(3)==0,009351341
D(4)=0,00C023006
D(5)=0,004851466
D(6)=0001903218
D(7)==0e017122914
D(8)=0.029064067
D(9)==0,027928955
D(10)1=042164972308
D(111==0,005598515
D(12)=0,000838386
IF(XSelLE«OeO) GO TO 414
X=XsS

X=X#X

FR=0.0

FI=0e0

K=13

IF(X=4e0) 10440440
Y=X/4860

KzK=1
FR=(FR+A(K) ) *Y
FI=(FI+8(K))*Y
IF(K=2) 30+430,+20
FR=FR+A (1)

FI=F1+B (1)
C=(FR¥COS(X)I+FI*SIN(X))#SQRT (Y)
Sz (FR*¥SIN(X)=FI®#COS(X))%*SQRT(Y)
RETURN

Y=4,0/X

K=zK~=1
FR=(FR+CC(K) ) *Y
FI=(F14+D(K))#*Y
IF(K=2) 60+¢604¢50
FR=FR+CC(1)
FI=FI+D(1)
C=0eS+(FRECOS(X)+FIXSIN(X))%SORTLY)
S=z0eS+(FRESINIX)~F I #COS(X) I XSART (Y)

RETURN
C=-0.0
S=~00
RETURN
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‘APPENDIX II1

A shadow boundary approximation of Vg(p, ) for =7 as given in
Eq. (13) is obtained as follows:

First examine I_;(p,f,n) from Eqs. (32) and (33).

(34) lim I_z(p,B,n)
B—mw+te
(tr3)
Sl XPTR
2
= lim £ N ‘I Na cot( ﬁ) eJkpa gm 1 T dr
B—Tte jn N2w 2n (kp '??
where a=1 + cosp (N = 0).
Then let us note the following approximations:
(35) Na = NTtcosB = N2 cos% l
N2 cos(%j-_%) = '\/_2.s1n—‘ = _'\/2 ’ie[

as B—w t e

for € small

te
Ll - T te) _ _2—) ~ [Fe
(36) tan (_ZI) tan (—Z—r—l) = ?;:1 = (Zn)
- 2n

for € small.

The limiting operation then becomes

(37) " lim I_.n. (prﬁyn
B—~nte
—j(kp+1’-) N2 4] | = L
N € 4 2 lim -e_]kp(l+cos[3) o IT ar
jn N2w f_‘_) p—mte
Zn '\/m cos%
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Employing the small argument approximation for the Fresnel integral,
it is seen that

[}
2
-JT ~ [T 1 .1 ﬁ
38 = l=l5-i= - =
(38) S e dr lz(z 2) N2kp COSZ’
N2kp cos%
LT
No | T R B
=% |e T -4\ |cos3

Combining the results in Egs. (35), (36), (37), and (38) we obtain

(39) lim I_q(p»Bsn)
g—rte

sl 7

cos - | e
2

1 N
~ oy = _JjkpcosP l.&
-i.zeP 1-4)‘

where the plus sign is associated with p = m + ¢ and the minus sign is
associated withf = m - €.

Now the same operations may be performed on I ;(p, B, n)

(40) lim I, (p:B.n)
B—~mte

-j(kp+%) L -

= lim —e——:-/—_z__———— '\/‘a Cot(w2+p) eJkpa S e—JT dr
i n

pwmpe | JnNET

i
2

(kpa)

where a=1 + cos(f-2nm) (N = 1).

For € small, a good approximation would be

(41) a=1+cos(p-2nm) = 1 +cos(l-2n)7 , COt(zn
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Then
(42) lim I+'|T (p ’ ﬁ ’ n)
Bp—mte
-j(kp+%
y & NT+cos(l-2mmw cot ~
jn NZ2w n
00
jkp|[1+cos(B -2 _ie2
Jkplltcos(p -2nm)] S oI 4r

NKp[ T#cos(I-2n)m

Employing the large argument asymptotic expansion for the Fresnel
integral given by

o fm 2 . 'sz
(43) 5 ve—JT dr ~ L& | for x large,

2x
X

and combining the relationships of Egs. (41) and (42), we find

(44) hm I+Tr(P ’B :n)
p—~rmte
j(kp cosf - %)
T - —1— cot L X °
2n n N2 kp

Hence, the shadow boundary approximation for Vglp:B: n) for
B ¥m may be expressed as
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(45) VB(p,B,n)S’—‘-;— exp [ jkp cos B]
j
X {4+ l-4e4J)iI cosg{
T |
_JZ

» for = ¢

where the + sign is for p > 7 and the - sigh is for § <mw .

The validity of Eq. (45) has been verified by comparison with
results obtained from the eigenfunction formulation given by

m

(46) VB(p: B) =% Z €m J ® 3., (kp) cos % B - V¥p.B)
' m=0,1 n

n

% . . .
where V"~ is the geometrical optics component given by

(47) V¥(p, B) = rexp [ikp cos(B + 2w nN)
if -m <Bf +2rnN<mw

for N=0, +1, +2

0, otherwise.

C

and €.,/ is Neumann's number. The comparison for typical ranges of

p and B employed in this report is shown in Tables I and II. Equation (45)
can then be seen to be a good shadow boundary approximation whose accur-
acy increases for decreasing values of (1 + cosf )kp .

On the shadow boundary, i.e., p=m, VB is accurately given by

. w

1 -jkp 1 e—J(kp+Z)

- T

(48) Vap, =Tr,n)mi—e']p--—cot-— A E—
ps B 2 2n n "f—_——Zwkp
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TABLE 1
VB(p=1.0\, B, n=1.5)

8 Eigenfunction Formulation Shadow Boundary Approxi-
(in degrees) | of VB according to Eq. (46) mation of VB according to
Eq. (45)
170.0 -0.3614917 +j 0.0636647 -0.3631518 + j 0.0672927
175.0 -Ov.4173982 +j0.0306760 -0.4174924 + j 0.0300565
176.0 -0.4291918 +j 0.0220558 -0.4293600 + j 0.0211283
177.0 -0.4411354 4+ j 0.01266105 -0.4414378 + j 0.0115609
178.0 -0.4531978 + j 0.0024462 -0.4536685 + j 0.0012868
179.0 -0.4653436 - j 0.0086347 -0.4659914 - j 0.0097629
180.0° -0.4775324 - j 0.0206277 -0.4783417 - j 0.0216582
180.0% 0.5224676 - j 0.0206277 0.5216583 - j 0.0216582
1 181.0 0.5102809 - j 0.0326225 0.5093494 - j 0.0335120
182.0 0.4981415 - j 0.0437082 0.4971506 - j 0.0444371
183.0 0.4860898 - 0.0539315 0.4851258 - j 0.0545027
184.0 0.4741612 - j 0.0633381 0.4733345 - j 0.0637767
185.0 0.4623868 - j 0.0719734 0.4618322 - j 0.0723250
190.0 0.4066414 - j 0.1050881 0.4103997 - j 0.1062834
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TABLE II
Ve(p=3.0\,8,n=1.5)

B

(in degrees)

Eigenfunction Formulation
of VB according to Eq. (46)

Shadow Boundary Approxi-
mation of VB according to

170.0
175.0
176.0
177.0
178.0
179.0
180,0°
180.0%
181.0
182.0
183.0
184.0
185.0

190.0

-0.2992610 + j 0.0963678

-0.3848230 + j 0.0640383
-0.4042744 + j 0.0530977
-0.4243764 + j 0.0402138
-0.4450208 + j 0.0251690
-0.4660657 + j 0.0077345
-0.4873291 - j 0.0123277
0.5126709 - j 0.0123277
0.4914107 - j 0.0323876
0.4703744 - j 0.0498169
0.4497428 - j 0.0648551
0.4296558 - j 0.0777343
0.4102195 - j 0.0886765
0.3247258 - j 0.1211227

-0.3196212 + j 0.1153991
-0.3864326 + j 0.0668182
-0.4049357 + j 0.0544522
-0.4245673 + j 0.0406628
-0.4450639 + j 0.0251363

-0.4661435 + j 0.0075329

-0.4874955 - j 0.0125045
0.5125045 - j 0.0125045

0.4912241

j 0.0324696

0.4703585 - j 0.0498561

0.4502139 - j 0.0650171

0.4310662

j 0.0782865

0.4131695

j 0.0899702

0.3506759 - j 0.1323250
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APPENDIX IV

The free-space reflection coefficient of a ground-plane mounted
parallel-plate waveguide was analyzed by wedge difffraction and com-
pared to results from other methods of analysis in Ref. 3. The compari-
son showed close agreement in the reflection coefficient magnitude. The
comparison in reflection coefficient phase is shown in Fig. 24. The
result of Harrington'? is essentially that from a Fourier Transform .
solution with a dominant mode assumption. Do Amaral and Bautista
Vidal' included the effects of higher-order modes in a variational
solution. The Geometrical Theory of Diffraction (GTD) results were
obtained by Yee, Felsen and Keller.!® The phase correction factor
introduced by the presence of higher order modes is thus demonstrated
by this comparison.

It is believed that the presence of higher order modes will enter
into the reflection coefficient analysis of this report in another regard,
i.e., the on-axis radiation from the free-space guide as depicted in
Fig. 25. Calculations of the on-axis field employing a variational ex-
pression with a dominant mode assumption'® has been performed. A
detailed comparison of this result with that obtained from wedge dif-
fraction analysis will be given in Ref. 6. In general, however, close
agreement is found in the magnitude but some phase differences (on the
order of 10° for a guide width of 0.278\) is noted. It is believed that
the presence of higher order modes causes this phase deviation in a
manner similar to that for the free-space reflection coefficient.
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On-axis field.
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